Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aqua(4-carboxypyridine-2,6-dicarboxylato- $\kappa^3 O^2$, N, O⁶)(1,10-phenanthroline- $\kappa^2 N$, N')nickel(II)

Qin Zou, Jian-fei Wang and Jian-li Lin*

Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China Correspondence e-mail: linjianli@nbu.edu.cn

Received 13 June 2011; accepted 1 July 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; R factor = 0.044; wR factor = 0.142; data-to-parameter ratio = 14.5.

The title compound, $[Ni(C_8H_3NO_6)(C_{12}H_8N_2)(H_2O)]$, contains an Ni^{II} ion, a 1,10-phenanthroline (phen) ligand, a 4-carboxypyridine-2,6-dicarboxylate (Hptc²⁻) anion and a coordinated water molecule. The Ni^{II} atom exhibits a distorted octahedral N₃O₃ environment. O–H···O hydrogen bonding between coordinated water and carboxylate O atoms, as well as π - π stacking interactions [interplanar distances between phen rings = 3.293 (2) Å] lead to a supermolecular assembly.

Related literature

For the synthesis of pyridine-2,4,6-tricarboxylic acid, see: Syper *et al.* (1980). For related structures, see: Ma *et al.* (2002); Ramadevi *et al.* (2006); Harrison *et al.* (2006).

Experimental

Crystal data

 $[Ni(C_8H_3NO_6)(C_{12}H_8N_2)(H_2O)]$ $M_r = 466.04$ Monoclinic, $P2_1/c$

a = 6.8387 (14) Åb = 13.421 (3) Åc = 19.676 (4) Å $\beta = 91.87 (3)^{\circ}$ $V = 1805.0 (6) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.763, T_{max} = 0.893$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.142$ S = 1.194058 reflections $R_{\rm int} = 0.054$

metal-organic compounds

T = 203 K

 $0.24 \times 0.22 \times 0.10 \text{ mm}$

17250 measured reflections

4058 independent reflections

2573 reflections with $I > 2\sigma(I)$

280 parameters H-atom parameters constrained $\Delta \rho_{max} = 1.34$ e Å⁻³ $\Delta \rho_{min} = -1.52$ e Å⁻³

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3A\cdots O2^{i}$	0.85	1.70	2.550 (5)	178
$O7-H7A\cdots O5^{ii}$	0.85	1.87	2.702 (5)	167
$O7 - H7B \cdots O5^{iii}$	0.85	2.00	2.783 (5)	152
Symmetry codes: (i) -	$x + 1, y + \frac{1}{2}, -z$	$x + \frac{3}{2}$; (ii) $-x, -y$	y + 2, -z + 1; (iii)	x + 1, y, z.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This project was supported by the Scientific Research Fund of Zhejiang Provincial Education Department (grant No. Y201017782). Sincere thanks are also extended to the K. C. Wong Magna Fund of Ningbo University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2419).

References

- Harrison, W. T. A., Ramadevi, P. & Kumaresan, S. (2006). Acta Cryst. E62, m513–m515.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Ma, C.-B., Fan, C., Chen, C.-N. & Liu, Q.-T. (2002). Acta Cryst. C58, m553– m555.
- Ramadevi, P., Kumaresan, S. & Sharma, N. (2006). Acta Cryst. E62, m2957– m2959.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Syper, L., Kloc, K. & Mlochowski, J. (1980). Tetrahedron, 36, 123-129.

Acta Cryst. (2011). E67, m1043 [doi:10.1107/S1600536811026055]

$Aqua (4-carboxypyridine-2, 6-dicarboxylato-\kappa^3 O^2, N, O^6) (1, 10-phenanthroline-\kappa^2 N, N') nickel (II)$

Q. Zou, J. Wang and J. Lin

Comment

The asymmetric unit of the title compound contains a Ni^{II} ion, a 1,10-phenanthroline ligand, a 4-carboxypyridine-2,6-dicarboxylate (Hptc²⁻) anion and a coordinated molecule of water. The Hptc²⁻ anion adopts a $\eta^{3}\mu_{1}$ coordination mode and chelates the Ni^{II} atom through the pyridine N atom and two neighboring carboxylate O atoms. The Ni^{II} atoms is six-coordinated by two N atoms from phen, one nitrogen from Hptc²⁻, two oxygen atoms from Hptc²⁻ and one oxygen from coordinated water, in a octahedral N₃O₃ environment. The π - π stacking interactions between the parallel phen rings with the interplanar distance of 3.293 (2)Å interlink the [Ni(Hptc)(phen)(H₂O)] units to form one-dimensional chains, which further grow into three-dimensional supramolecular construction by hydrogen bonding O—H…O interactions between coordinated water molecules and carboxylate groups.

Experimental

The ligand (H₃ptc) was synthesized by oxidization of pyridine-2,4,6-trimethyl with potassium permanganate as reported in the literature (Syper *et al.*, 1980). A solution of Ni(ClO₄)₂.6H₂O (0.0731 g, 0.2 mmol), H₃ptc (0.0425 g, 0.2 mmol), phen (0.0396 g, 0.2 mmol) in H₂O (8.0 ml) wasy sealed in a 23 ml Teflon-lined stainless-steel autoclave, which was heated to 413 K and kept at this temperature for 3 days, then the reactor was slow cooled to room temperature at a rate of 5 K/h, green crystals were collected after filtration.

Refinement

H atoms bonded to C atoms were placed in their geometrically calculated positions and refined using the riding model, with C–H distances 0.93Å and $U_{iso}(H) = 1.2 U_{eq}(C)$. H atoms attached to O atoms were found in a difference Fourier map and then refined using the riding model, with O–H distances fixed at 0.85Å and $U_{iso}(H)$ values set at 1.2 $U_{eq}(O)$. The final difference map showed residual electron density close to the Ni-atom which was essentially meaningless.

Figures

Fig. 1. *ORTEP* view of the title compound. The dispalcement ellipsoids are drawn at 35% probability level.

Fig. 2. Packing diagram of the title crystal structure viewed along [100]. O—H…O hydrogen bonds are shown as dashed line.

Aqua(4-carboxypyridine-2,6-dicarboxylato- $\kappa^3 O^2$, N, O^6)(1,10-phenanthroline- $\kappa^2 N$, N')nickel(II)

Crystal data	
[Ni(C ₈ H ₃ NO ₆)(C ₁₂ H ₈ N ₂)(H ₂ O)]	F(000) = 952
$M_r = 466.04$	$D_{\rm x} = 1.715 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 10705 reflections
a = 6.8387 (14) Å	$\theta = 3.0-27.4^{\circ}$
b = 13.421 (3) Å	$\mu = 1.13 \text{ mm}^{-1}$
c = 19.676 (4) Å	T = 293 K
$\beta = 91.87 \ (3)^{\circ}$	Chip, green
V = 1805.0 (6) Å ³	$0.24 \times 0.22 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Rigaku R-AXIS RAPID diffractometer	4058 independent reflections
Radiation source: fine-focus sealed tube	2573 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.054$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
ω scan	$h = -8 \rightarrow 7$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -17 \rightarrow 17$
$T_{\min} = 0.763, \ T_{\max} = 0.893$	$l = -25 \rightarrow 24$
17250 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.142$	H-atom parameters constrained
<i>S</i> = 1.19	$w = 1/[\sigma^2(F_o^2) + (0.0123P)^2 + 8.1487P]$ where $P = (F_o^2 + 2F_c^2)/3$

4058 reflections	$(\Delta/\sigma)_{max} < 0.001$
280 parameters	$\Delta \rho_{max} = 1.34 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.52 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ni1	0.26648 (9)	0.77711 (4)	0.53877 (3)	0.02863 (18)
N1	0.2227 (6)	0.8906 (3)	0.60244 (19)	0.0268 (9)
C1	0.3686 (7)	0.9196 (3)	0.6443 (2)	0.0309 (11)
C2	0.3585 (7)	1.0087 (3)	0.6793 (2)	0.0304 (11)
H2A	0.4603	1.0289	0.7086	0.036*
C3	0.1919 (7)	1.0673 (3)	0.6695 (2)	0.0286 (10)
C4	0.0397 (7)	1.0350 (3)	0.6258 (2)	0.0297 (10)
H4A	-0.0730	1.0730	0.6191	0.036*
C5	0.0617 (7)	0.9450 (3)	0.5930 (2)	0.0260 (10)
C6	0.5378 (7)	0.8459 (3)	0.6473 (2)	0.0291 (10)
O1	0.5323 (5)	0.7781 (3)	0.60344 (17)	0.0341 (8)
O2	0.6618 (5)	0.8555 (3)	0.69549 (19)	0.0418 (9)
C7	0.1719 (8)	1.1668 (4)	0.7044 (2)	0.0343 (11)
O3	0.3151 (6)	1.1847 (3)	0.7480 (2)	0.0595 (13)
H3A	0.3243	1.2410	0.7678	0.071*
O4	0.0343 (6)	1.2209 (3)	0.6934 (2)	0.0495 (10)
C8	-0.0789 (7)	0.9010 (3)	0.5395 (2)	0.0275 (10)
O5	-0.2403 (5)	0.9434 (2)	0.52867 (18)	0.0337 (8)
O6	-0.0182 (5)	0.8251 (2)	0.50894 (17)	0.0339 (8)
N2	0.2834 (6)	0.6679 (3)	0.4662 (2)	0.0322 (9)
C9	0.3157 (8)	0.6781 (4)	0.4005 (3)	0.0422 (13)
H9A	0.3303	0.7417	0.3828	0.051*
C10	0.3286 (9)	0.5957 (5)	0.3570 (3)	0.0497 (15)
H10A	0.3494	0.6053	0.3109	0.060*
C11	0.3106 (8)	0.5023 (5)	0.3821 (3)	0.0498 (16)
H11A	0.3230	0.4474	0.3537	0.060*
C12	0.2735 (7)	0.4888 (4)	0.4508 (3)	0.0404 (13)
C13	0.2495 (8)	0.3931 (4)	0.4819 (4)	0.0489 (16)
H13A	0.2571	0.3358	0.4556	0.059*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C14	0.2159 (8)	0.3851 (4)	0.5490 (4)	0.0494 (16)
H14A	0.2020	0.3223	0.5681	0.059*
C15	0.2011 (7)	0.4721 (4)	0.5916 (3)	0.0375 (12)
C16	0.1738 (8)	0.4681 (4)	0.6613 (3)	0.0463 (15)
H16A	0.1622	0.4071	0.6832	0.056*
C17	0.1642 (9)	0.5552 (5)	0.6972 (3)	0.0507 (15)
H17A	0.1518	0.5538	0.7441	0.061*
C18	0.1734 (8)	0.6465 (4)	0.6628 (3)	0.0422 (13)
H18A	0.1594	0.7050	0.6875	0.051*
C19	0.2191 (7)	0.5668 (4)	0.5611 (3)	0.0317 (11)
C20	0.2586 (7)	0.5750 (4)	0.4907 (3)	0.0324 (11)
N3	0.2010 (6)	0.6526 (3)	0.5969 (2)	0.0324 (9)
O7	0.4073 (5)	0.8742 (2)	0.47182 (17)	0.0345 (8)
H7A	0.3512	0.9298	0.4780	0.041*
H7B	0.5130	0.8761	0.4958	0.041*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0348 (3)	0.0194 (3)	0.0314 (3)	0.0007 (3)	-0.0033 (2)	-0.0022 (3)
N1	0.034 (2)	0.0173 (18)	0.028 (2)	0.0010 (16)	-0.0053 (17)	-0.0006 (15)
C1	0.040 (3)	0.020 (2)	0.033 (3)	0.001 (2)	-0.005 (2)	0.0031 (19)
C2	0.034 (3)	0.023 (2)	0.034 (3)	0.000 (2)	-0.008 (2)	-0.001 (2)
C3	0.036 (3)	0.021 (2)	0.028 (2)	-0.002 (2)	-0.002 (2)	-0.0005 (19)
C4	0.038 (3)	0.022 (2)	0.028 (2)	0.002 (2)	-0.005 (2)	0.0019 (19)
C5	0.030 (2)	0.020 (2)	0.028 (2)	0.0004 (18)	-0.0018 (19)	0.0029 (18)
C6	0.037 (3)	0.019 (2)	0.031 (3)	-0.0007 (19)	-0.007 (2)	0.0048 (19)
01	0.0378 (19)	0.0238 (17)	0.040 (2)	0.0042 (15)	-0.0057 (15)	-0.0025 (15)
O2	0.049 (2)	0.0286 (19)	0.046 (2)	0.0032 (17)	-0.0203 (18)	0.0017 (16)
C7	0.047 (3)	0.025 (2)	0.030 (3)	-0.002 (2)	-0.005 (2)	-0.003 (2)
O3	0.068 (3)	0.039 (2)	0.069 (3)	0.011 (2)	-0.035 (2)	-0.028 (2)
O4	0.057 (3)	0.031 (2)	0.059 (3)	0.0141 (19)	-0.021 (2)	-0.0126 (19)
C8	0.036 (3)	0.021 (2)	0.025 (2)	-0.003 (2)	-0.003 (2)	0.0037 (18)
O5	0.0275 (18)	0.0263 (18)	0.047 (2)	0.0016 (15)	-0.0073 (15)	-0.0007 (15)
O6	0.038 (2)	0.0237 (17)	0.039 (2)	0.0017 (15)	-0.0099 (15)	-0.0071 (15)
N2	0.033 (2)	0.028 (2)	0.036 (2)	0.0024 (17)	-0.0039 (18)	-0.0058 (18)
C9	0.043 (3)	0.042 (3)	0.041 (3)	0.003 (3)	-0.001 (2)	-0.008 (3)
C10	0.052 (4)	0.058 (4)	0.038 (3)	0.008 (3)	-0.009 (3)	-0.014 (3)
C11	0.043 (3)	0.046 (4)	0.060 (4)	0.008 (3)	-0.008 (3)	-0.029 (3)
C12	0.028 (3)	0.033 (3)	0.060 (4)	0.005 (2)	-0.011 (2)	-0.015 (3)
C13	0.034 (3)	0.028 (3)	0.083 (5)	0.005 (2)	-0.011 (3)	-0.015 (3)
C14	0.038 (3)	0.020 (3)	0.090 (5)	0.000 (2)	-0.004 (3)	0.000 (3)
C15	0.026 (3)	0.030 (3)	0.057 (3)	0.001 (2)	-0.003 (2)	0.006 (2)
C16	0.033 (3)	0.035 (3)	0.070 (4)	-0.001 (2)	0.004 (3)	0.019 (3)
C17	0.050 (4)	0.052 (4)	0.050 (4)	0.001 (3)	0.005 (3)	0.018 (3)
C18	0.048 (3)	0.040 (3)	0.039 (3)	0.001 (3)	0.007 (2)	0.001 (2)
C19	0.026 (2)	0.025 (2)	0.044 (3)	-0.0004 (19)	-0.008 (2)	-0.003 (2)
C20	0.029 (3)	0.024 (2)	0.043 (3)	0.003 (2)	-0.010 (2)	-0.006 (2)

N3 07	0.040 (2) 0.039 (2)	0.024 (2) 0.0264 (18)	0.034 (2) 0.0378 (19)	-0.0017 (18) 0.0009 (15)	-0.0001 (18) -0.0046 (15)	0.0019 (17) -0.0006 (15)
Geometric para	meters (Å, °)					
Ni1—N1		2.001 (4)	N2—	C20	1.34	9 (6)
Ni1—N2		2.053 (4)	С9—	C10	1.40	3 (8)
Ni1—N3		2.081 (4)	C9—]	H9A	0.93	00
Nil—O7		2.108 (4)	C10-	-C11	1.35	5 (9)
Nil—O6		2.115 (3)	C10–	-H10A	0.93	00
Ni1—O1		2.184 (3)	C11–	-C12	1.39	5 (8)
N1—C5		1.329 (6)	C11–	-H11A	0.93	00
N1-C1		1.331 (6)	C12-	-C20	1.40	2 (7)
C1—C2		1.381 (6)	C12-	-C13	1.43	5 (8)
C1—C6		1.522 (7)	C13–	-C14	1.35	2 (9)
C2—C3		1.393 (7)	C13-	-H13A	0.93	00
C2—H2A		0.9300	C14-	-C15	1.44	2 (8)
C3—C4		1.398 (6)	C14-	-H14A	0.93	00
С3—С7		1.510(7)	C15–	-C16	1.39	1 (8)
C4—C5		1.380 (6)	C15-	-C19	1.41	3 (7)
C4—H4A		0.9300	C16–	-C17	1.36	8 (9)
C5—C8		1.522 (6)	C16–	-H16A	0.93	00
C6—O1		1.254 (6)	C17–	-C18	1.40	1 (8)
C6—O2		1.258 (6)	C17–	-H17A	0.93	00
С7—О4		1.203 (6)	C18–	-N3	1.32	0 (6)
С7—ОЗ		1.302 (6)	C18–	-H18A	0.93	00
ОЗ—НЗА		0.8512	C19–	-N3	1.35	8 (6)
C8—O5		1.253 (6)	C19–	-C20	1.42	5 (7)
C8—O6	1.261 (6) O7—H7A		H7A	0.85	02	
N2—C9		1.325 (7)	07—	H7B	0.84	98
N1—Ni1—N2		172.90 (16)	C9—]	N2—C20	118.	0 (4)
N1—Ni1—N3		103.18 (16)	C9—1	N2—Ni1	128.	3 (4)
N2—Ni1—N3		80.03 (17)	C20–	-N2-Ni1	113.	7 (3)
N1—Ni1—O7		90.09 (15)	N2—	C9—C10	122.	0 (6)
N2-Ni1-07		88.24 (15)	N2—	С9—Н9А	119.)
N3—Ni1—O7		161.85 (15)	C10–	-С9—Н9А	119.)
N1—Ni1—O6		77.69 (14)	C11-	-С10—С9	119.	3 (6)
N2-Ni1-06		95.55 (14)	C11-	-C10—H10A	120.	1
N3—Ni1—O6		100.60 (16)	С9—	C10—H10A	120.	1
07—Ni1—O6		94.23 (14)	C10–	-C11C12	119.	7 (5)
N1-Ni1-01		76.68 (14)	C10–	-C11—H11A	120.	2
N2—Ni1—O1		110.16 (15)	C12-	-C11—H11A	120.1	2
N3—Ni1—O1		82.81 (15)	C11-	-C12-C20	117.) (5)
07—Ni1—O1		88.39 (13)	C11-	-C12C13	123.	8 (5)
06—Ni1—O1		154.24 (13)	C20–	-C12C13	119.2	2 (5)
C5—N1—C1		121.8 (4)	C14—	-C13C12	120.	8 (5)
C5—N1—Ni1		118.1 (3)	C14—	-C13—H13A	119.	6
C1—N1—Ni1		119.1 (3)	C12-	-C13—H13A	119.	6
N1—C1—C2		120.8 (4)	C13–	-C14C15	121.4	4 (5)

N1—C1—C6	112.8 (4)	C13—C14—H14A	119.3
C2—C1—C6	126.4 (4)	C15—C14—H14A	119.3
C1—C2—C3	118.3 (4)	C16—C15—C19	118.0 (5)
C1—C2—H2A	120.8	C16—C15—C14	123.8 (5)
C3—C2—H2A	120.8	C19—C15—C14	118.2 (5)
C2—C3—C4	119.9 (4)	C17—C16—C15	119.1 (5)
C2—C3—C7	121.6 (4)	C17—C16—H16A	120.5
C4—C3—C7	118.5 (4)	C15—C16—H16A	120.5
C5—C4—C3	118.0 (4)	C16—C17—C18	119.6 (6)
С5—С4—Н4А	121.0	C16—C17—H17A	120.2
C3—C4—H4A	121.0	С18—С17—Н17А	120.2
N1—C5—C4	121.2 (4)	N3—C18—C17	122.6 (5)
N1	112.7 (4)	N3-C18-H18A	118.7
C4—C5—C8	126.0 (4)	C17—C18—H18A	118.7
O1—C6—O2	126.7 (5)	N3—C19—C15	122.2 (5)
O1—C6—C1	116.1 (4)	N3—C19—C20	117.5 (4)
O2—C6—C1	117.1 (4)	C15—C19—C20	120.3 (5)
C6—O1—Ni1	114.3 (3)	N2-C20-C12	123.4 (5)
O4—C7—O3	125.1 (5)	N2-C20-C19	116.6 (4)
O4—C7—C3	122.3 (5)	C12—C20—C19	120.0 (5)
O3—C7—C3	112.6 (4)	C18—N3—C19	118.4 (5)
С7—О3—НЗА	120.5	C18—N3—Ni1	129.1 (4)
O5—C8—O6	126.0 (4)	C19—N3—Ni1	111.8 (3)
O5—C8—C5	118.3 (4)	Ni1—O7—H7A	103.6
O6—C8—C5	115.7 (4)	Ni1—O7—H7B	94.0
C8—O6—Ni1	115.4 (3)	H7A—O7—H7B	105.9

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O3—H3A···O2 ⁱ	0.85	1.70	2.550 (5)	178
O7—H7A···O5 ⁱⁱ	0.85	1.87	2.702 (5)	167
O7—H7B···O5 ⁱⁱⁱ	0.85	2.00	2.783 (5)	152

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+3/2; (ii) -*x*, -*y*+2, -*z*+1; (iii) *x*+1, *y*, *z*.

Fig. 1

Fig. 2

